Skip to main content Skip to secondary navigation
Journal Article

MCML: Combining physical constraints with experimental data for a multi-purpose meta-generalized gradient approximation

The predictive power of density functional theory for materials properties can be improved without increasing the overall computational complexity by extending the generalized gradient approximation (GGA) for electronic exchange and correlation to density functionals depending on the electronic kinetic energy density in addition to the charge density and its gradient, resulting in a meta-GGA. Here, we propose an empirical meta-GGA model that is based both on physical constraints and on experimental and quantum chemistry reference data. The resulting optimized meta-GGA MCML yields improved surface and gas phase reaction energetics without sacrificing the accuracy of bulk property predictions of existing meta-GGA approaches.

Link to article

Author(s)
Kristopher Brown
Yasheng Maimaiti
Kai Trepte
Thomas Bligaard
Johannes Voss
Journal Name
J. Comput. Chem.
Publication Date
2021
DOI
10.1002/jcc.26732